Fibrocystin/polyductin modulates renal tubular formation by regulating polycystin-2 expression and function.

نویسندگان

  • Ingyu Kim
  • Yulong Fu
  • Kwokyin Hui
  • Gilbert Moeckel
  • Weiyi Mai
  • Cunxi Li
  • Dan Liang
  • Ping Zhao
  • Jie Ma
  • Xing-Zhen Chen
  • Alfred L George
  • Robert J Coffey
  • Zhong-Ping Feng
  • Guanqing Wu
چکیده

Autosomal recessive polycystic kidney disease is caused by mutations in PKHD1, which encodes the membrane-associated receptor-like protein fibrocystin/polyductin (FPC). FPC associates with the primary cilia of epithelial cells and co-localizes with the Pkd2 gene product polycystin-2 (PC2), suggesting that these two proteins may function in a common molecular pathway. For investigation of this, a mouse model with a gene-targeted mutation in Pkhd1 that recapitulates phenotypic characteristics of human autosomal recessive polycystic kidney disease was produced. The absence of FPC is associated with aberrant ciliogenesis in the kidneys of Pkhd1-deficient mice. It was found that the COOH-terminus of FPC and the NH2-terminus of PC2 interact and that lack of FPC reduced PC2 expression but not vice versa, suggesting that PC2 may function immediately downstream of FPC in vivo. PC2-channel activities were dysregulated in cultured renal epithelial cells derived from Pkhd1 mutant mice, further supporting that both cystoproteins function in a common pathway. In addition, mice with mutations in both Pkhd1 and Pkd2 had a more severe renal cystic phenotype than mice with single mutations, suggesting that FPC acts as a genetic modifier for disease severity in autosomal dominant polycystic kidney disease that results from Pkd2 mutations. It is concluded that a functional and molecular interaction exists between FPC and PC2 in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fibrocystin/polyductin, found in the same protein complex with polycystin-2, regulates calcium responses in kidney epithelia.

Recent evidence suggests that fibrocystin/polyductin (FPC), polycystin-1 (PC1), and polycystin-2 (PC2) are all localized at the plasma membrane and the primary cilium, where PC1 and PC2 contribute to fluid flow sensation and may function in the same mechanotransduction pathways. To further define the exact subcellular localization of FPC, the protein product encoded by the PKHD1 gene responsibl...

متن کامل

New Insights into the Molecular Mechanisms Targeting Tubular Channels/Transporters in PKD Development.

BACKGROUND Autosomal dominant polycystic kidney disease (PKD) or autosomal recessive PKD is caused by a mutation in the PKD1, PKD2 or PKHD1 gene, which encodes polycystin-1, polycystin-2 or fibrocystin, respectively. Embryonic and postnatal mutation studies show that transport or channel function is dysregulated before the initiation of cystogenesis, suggesting that the abnormality of transport...

متن کامل

Kinesin-2 mediates physical and functional interactions between polycystin-2 and fibrocystin.

Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1, encoding polycystin-1 (PC1), or PKD2 (polycystin-2, PC2). Autosomal recessive PKD (ARPKD) is caused by mutations in PKHD1, encoding fibrocystin/polyductin (FPC). No molecular link between ADPKD and ARPKD has been determined. Here, we demonstrated, by yeast two-hybrid and biochemical assays, that KIF3B, a motor ...

متن کامل

The polycystin-1 C-terminal fragment triggers branching morphogenesis and migration of tubular kidney epithelial cells.

Mutations of either PKD1 or PKD2 cause autosomal dominant polycystic kidney disease, a syndrome characterized by extensive formation of renal cysts and progressive renal failure. Homozygous deletion of Pkd1 or Pkd2, the genes encoding polycystin-1 and polycystin-2, disrupt normal renal tubular differentiation in mice but do not affect the early steps of renal development. Here, we show that exp...

متن کامل

Mutant polycystin-2 induces proliferation in primary rat tubular epithelial cells in a STAT-1/p21-independent fashion accompanied instead by alterations in expression of p57KIP2 and Cdk2

BACKGROUND Autosomal Dominant Polycystic Kidney Disease (ADPKD) is characterized by the formation of multiple fluid-filled cysts that destroy the kidney architecture resulting in end-stage renal failure. Mutations in genes PKD1 and PKD2 account for nearly all cases of ADPKD. Increased cell proliferation is one of the key features of the disease. Several studies indicated that polycystin-1 regul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 19 3  شماره 

صفحات  -

تاریخ انتشار 2008